Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 129: 155534, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38583346

RESUMO

BACKGROUND: Severe respiratory system illness caused by influenza A virus infection is associated with excessive inflammation and abnormal apoptosis in alveolar epithelial cells (AEC). However, there are limited therapeutic options for influenza-associated lung inflammation and apoptosis. Pterostilbene (PTE, trans-3,5-dimethoxy-4-hydroxystilbene) is a dimethylated analog of resveratrol that has been reported to limit influenza A virus infection by promoting antiviral innate immunity, but has not been studied for its protective effects on virus-associated inflammation and injury in AEC. PURPOSE: Our study aimed to investigate the protective effects and underlying mechanisms of PTE in modulating inflammation and apoptosis in AEC, as well as its effects on macrophage polarization during influenza virus infection. STUDY DESIGN AND METHODS: A murine model of influenza A virus-mediated acute lung injury was established by intranasal inoculation with 5LD50 of mouse-adapted H1N1 viruses. Hematoxylin and eosin staining, immunofluorescence, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, western blotting, Luminex and flow cytometry were performed. RESULTS: PTE effectively mitigated lung histopathological changes and injury induced by H1N1 viruses in vivo. These beneficial effects of PTE were attributed to the suppression of inflammation and apoptosis in AEC, as well as the modulation of M1 macrophage polarization. Mechanistic investigations revealed that PTE activated the phosphorylated AMP-activated protein kinase alpha (P-AMPKα)/sirtui1 (Sirt1)/PPARγ coactivator 1-alpha (PGC1α) signal axis, leading to the inhibition of nuclear factor kappa-B (NF-κB) and p38 mitogen-activated protein kinase (MAPK) signaling induced by H1N1 viruses, thereby attenuating inflammation and apoptosis in AEC. PTE also forced activation of the P-AMPKα/Sirt1/PGC1α signal axis in RAW264.7 cells, counteracting the activation of phosphorylated signal transducer and activator of transcription 1 (P-STAT1) induced by H1N1 viruses and the augment of P-STAT1 activation in RAW264.7 cells with interferon-gamma (IFN-γ) pretreatment before viral infection, thereby reducing H1N1 virus-mediated M1 macrophage polarization as well as the enhancement of macrophages into M1 phenotypes elicited by IFN-γ pretreatment. Additionally, the promotion of the transition of macrophages towards the M2 phenotype by PTE was also related to activation of the P-AMPKα/Sirt1/PGC1α signal axis. Moreover, co-culturing non-infected AEC with H1N1 virus-infected RAW264.7 cells in the presence of PTE inhibited apoptosis and tight junction disruption, which was attributed to the suppression of pro-inflammatory mediators and pro-apoptotic factors in an AMPKα-dependent manner. CONCLUSION: In conclusion, our findings suggest that PTE may serve as a promising novel therapeutic option for treating influenza-associated lung injury. Its ability to suppress inflammation and apoptosis in AEC, modulate macrophage polarization, and preserve alveolar epithelial cell integrity highlights its potential as a therapeutic agent in influenza diseases.

2.
Appl Environ Microbiol ; 90(2): e0213123, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38265214

RESUMO

The ability to utilize dissolved organic phosphorus (DOP) gives phytoplankton competitive advantages in P-limited environments. Our previous research indicates that the diatom Phaeodactylum tricornutum could grow on glyphosate, a DOP with carbon-phosphorus (C-P) bond and an herbicide, as sole P source. However, direct evidence and mechanism of glyphosate utilization are still lacking. In this study, using physiological and isotopic analysis, combined with transcriptomic profiling, we demonstrated the uptake of glyphosate by P. tricornutum and revealed the candidate responsible genes. Our data showed a low efficiency of glyphosate utilization by P. tricornutum, suggesting that glyphosate utilization costs energy and that the alga possessed an herbicide-resistant type of 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase. Compared to the P-limited cultures, the glyphosate-grown P. tricornutum cells up-regulated genes involved in DNA replication, cell growth, transcription, translation, carbon metabolism, and many genes encoding antioxidants. Additionally, cellular C and silicon (Si) increased remarkably while cellular nitrogen (N) declined in the glyphosate-grown P. tricornutum, leading to higher Si:C and Si:N ratios, which corresponded to the up-regulation of genes involved in the C metabolism and Si uptake and the down-regulation of those encoding N uptake. This has the potential to enhance C and Si export to the deep sea when P is limited but phosphonate is available. In sum, our study documented how P. tricornutum could utilize the herbicide glyphosate as P nutrient and how glyphosate utilization may affect the element content and stoichiometry in this diatom, which have important ecological implications in the future ocean.IMPORTANCEGlyphosate is the most widely used herbicide in the world and could be utilized as phosphorus (P) source by some bacteria. Our study first revealed that glyphosate could be transported into Phaeodactylum tricornutum cells for utilization and identified putative genes responsible for glyphosate uptake. This uncovers an alternative strategy of phytoplankton to cope with P deficiency considering phosphonate accounts for about 25% of the total dissolved organic phosphorus (DOP) in the ocean. Additionally, accumulation of carbon (C) and silicon (Si), as well as elevation of Si:C ratio in P. tricornutum cells when grown on glyphosate indicates glyphosate as the source of P nutrient has the potential to result in more C and Si export into the deep ocean. This, along with the differential ability to utilize glyphosate among different species, glyphosate supply in dissolved inorganic phosphorus (DIP)-depleted ecosystems may cause changes in phytoplankton community structure. These insights have implications in evaluating the effects of human activities (use of Roundup) and climate change (potentially reducing DIP supply in sunlit layer) on phytoplankton in the future ocean.


Assuntos
Diatomáceas , Herbicidas , Organofosfonatos , Humanos , 60658 , Silício/metabolismo , Fósforo/metabolismo , Matéria Orgânica Dissolvida , Ecossistema , Fitoplâncton/metabolismo , Herbicidas/metabolismo , Carbono/metabolismo , Organofosfonatos/metabolismo
3.
Microorganisms ; 12(1)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38257946

RESUMO

Initially discovered over 35 years ago in the bacterium Escherichia coli as a defense system against invasion of viral (or other exogenous) DNA into the genome, CRISPR/Cas has ushered in a new era of functional genetics and served as a versatile genetic tool in all branches of life science. CRISPR/Cas has revolutionized the methodology of gene knockout with simplicity and rapidity, but it is also powerful for gene knock-in and gene modification. In the field of marine biology and ecology, this tool has been instrumental in the functional characterization of 'dark' genes and the documentation of the functional differentiation of gene paralogs. Powerful as it is, challenges exist that have hindered the advances in functional genetics in some important lineages. This review examines the status of applications of CRISPR/Cas in marine research and assesses the prospect of quickly expanding the deployment of this powerful tool to address the myriad fundamental marine biology and biological oceanography questions.

4.
ACS Omega ; 8(45): 42062-42071, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38024730

RESUMO

Most chemicals are manufactured by traditional chemical processes but at the expense of toxic catalyst use, high energy consumption, and waste generation. Biotransformation is a green, sustainable, and cost-effective process. As cyanobacteria can use light as the energy source to power the synthesis of NADPH and ATP, using cyanobacteria as the chassis organisms to design and develop light-driven biotransformation platforms for chemical synthesis has been gaining attention, since it can provide a theoretical and practical basis for the sustainable and green production of chemicals. Meanwhile, metabolic engineering and genome editing techniques have tremendous prospects for further engineering and optimizing chassis cells to achieve efficient light-driven systems for synthesizing various chemicals. Here, we display the potential of cyanobacteria as a promising light-driven biotransformation platform for the efficient synthesis of green chemicals and current achievements of light-driven biotransformation processes in wild-type or genetically modified cyanobacteria. Meanwhile, future perspectives of one-pot enzymatic cascade biotransformation from biobased materials in cyanobacteria have been proposed, which could provide additional research insights for green biotransformation and accelerate the advancement of biomanufacturing industries.

5.
Mar Drugs ; 21(11)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37999384

RESUMO

With rapid growth and high lipid contents, microalgae have become promising environmentally friendly candidates for renewable biodiesel and health supplements in our era of global warming and energy depletion. Various pathways have been explored to enhance algal lipid production, especially gene editing. Previously, we found that the functional loss of PhoD-type alkaline phosphatase (AP), a phosphorus-stress indicator in phytoplankton, could lead to increased lipid contents in the model diatom Phaeodactylum tricornutum, but how the AP mutation may change lipid composition remains unexplored. This study addresses the gap in the research and investigates the effects of PhoD-type AP mutation on the lipid composition and metabolic regulation in P. tricornutum using transcriptomic and lipidomic analyses. We observed significantly modified lipid composition and elevated production of fatty acids, lysophosphatidylcholine, lysophosphatidylethanolamine, ceramide, phosphatidylinositol bisphosphate, and monogalactosylmonoacylglycerol after PhoD_45757 mutation. Meanwhile, genes involved in fatty acid biosynthesis were upregulated in mutant cells. Moreover, the mutant exhibited increased contents of ω-3 long-chain polyunsaturated fatty acid (LC-PUFA)-bound phospholipids, indicating that PhoD_45757 mutation could improve the potential bioavailability of PUFAs. Our findings indicate that AP mutation could influence cellular lipid synthesis and probably redirect carbon toward lipid production and further demonstrate that AP mutation is a promising approach for the development of high-value microalgal strains for biomedical and other applications.


Assuntos
Diatomáceas , Ácidos Graxos Ômega-3 , Microalgas , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Diatomáceas/metabolismo , Fosfatase Alcalina/metabolismo , Fosfolipídeos/metabolismo , Ácidos Graxos Insaturados , Ácidos Graxos Ômega-3/metabolismo , Microalgas/genética , Microalgas/metabolismo
6.
Microbiol Spectr ; : e0125523, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37702480

RESUMO

Dissolved organic phosphorus (DOP) is a potential source of aquatic eutrophication and pollution because it can potentially stimulate growth in some species and inhibit growth in other species of algae, the foundation of the marine ecosystem. Inositol hexaphosphate (also named phytic acid or PA), an abundant organophosphate, is presumably ubiquitous in the marine environment, but how it affects marine primary producers is poorly understood. Here, we investigated the bioavailability of this DOP to the cosmopolitan coccolithophore Emiliania huxleyi. Our results showed that E. huxleyi cells can take up PA and dissolved inorganic phosphorus (DIP) simultaneously. Absorbed PA can efficiently support algal growth, producing cell yield between DIP and phosphorus (P)-depleted conditions. Accordingly, PA supply as the sole P source highly influences cellular metabolism and nutrient stoichiometry. Particularly, PA-grown cultures exhibited enhanced carbon fixation, increased lipid content, activated energy metabolism, and induced nitrogen assimilation. However, our data suggest that PA may also exert some levels of toxic effects on E. huxleyi. This study provides novel insights into the variable effects of a DOP on marine phytoplankton, which will inform new inquiries about how the complex DOP constituencies in the ocean will shape phytoplankton community structure and function. IMPORTANCE The dissolved organic phosphorus (DOP) utilization in phytoplankton plays vital roles in cellular P homeostasis, P-nutrient niche, and the dynamics of community structure in marine ecosystems, but its mechanisms, potentially varying with species, are far from clear. In this study, we investigated the utilization of a widespread DOP species, which is commonly produced by plants (land plants and marine macrophytes) and released into coastal areas, in a globally distributed bloom-forming coccolithophore species in various phosphorus environments. Using a combination of physiological and transcriptomic measurements and analyses, our experimental results revealed the complex mechanism and two-sided effects of DOP (major algal growth-supporting and minor toxic effects) in this species, providing a novel perspective on phytoplankton nutrient regulation.

7.
Glob Chang Biol ; 29(23): 6558-6571, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37740668

RESUMO

Coral reefs thrive in the oligotrophic ocean and rely on symbiotic algae to acquire nutrients. Global warming is projected to intensify surface ocean nutrient deficiency and anthropogenic discharge of wastes with high nitrogen (N): phosphorus (P) ratios can exacerbate P nutrient limitation. However, our understanding on how symbiotic algae cope with P deficiency is limited. Here, we investigated the responses of a coral symbiotic species of Symbiodiniaceae, Cladocopium goreaui, to P-limitation by examining its physiological performance and transcriptomic profile. Under P stress, C. goreaui exhibited decreases in algal growth, photosynthetic efficiency, and cellular P content but enhancement in carbon fixation, N assimilation, N:P ratio, and energy metabolism, with downregulated expression of carbohydrate exporter genes. Besides, C. goreaui showed flexible mechanisms of utilizing different dissolved organic phosphorus to relieve P deficiency. When provided glycerol phosphate, C. goreaui hydrolyzed it extracellularly to produce phosphate for uptake. When grown on phytate, in contrast, C. goreaui upregulated the endocytosis pathway while no dissolved inorganic phosphorus was released into the medium, suggesting that phytate was transported into the cell, potentially via the endocytosis pathway. This study sheds light on the survival strategies of C. goreaui and potential weakening of its role as an organic carbon supplier in P-limited environments, underscoring the importance of more systematic investigation on future projections of such effects.


Assuntos
Antozoários , Dinoflagelados , Animais , Antozoários/fisiologia , Fósforo/metabolismo , Simbiose , Ácido Fítico/metabolismo , Recifes de Corais , Oceanos e Mares , Fosfatos/metabolismo , Dinoflagelados/fisiologia
8.
Vaccines (Basel) ; 11(2)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36851268

RESUMO

Live attenuated influenza vaccines offer broader and longer-lasting protection in comparison to inactivated influenza vaccines. The neuraminidase (NA) surface glycoprotein of influenza A virus is essential for the release and spread of progeny viral particles from infected cells. In this study, we de novo synthesized the NA gene, in which 62% of codons were synonymously changed based on mammalian codon bias usage. The codon-reprogrammed NA (repNA) gene failed to be packaged into the viral genome, which was achievable with partial restoration of wild-type NA sequence nucleotides at the 3' and 5' termini. Among a series of rescued recombinant viruses, we selected 20/13repNA, which contained 20 and 13 nucleotides of wild-type NA at the 3' and 5' termini of repNA, respectively, and evaluated its potential as a live attenuated influenza vaccine. The 20/13repNA is highly attenuated in mice, and the calculated LD50 was about 10,000-fold higher than that of the wild-type (WT) virus. Intranasal inoculation of the 20/13repNA virus in mice induced viral-specific humoral, cell-mediated, and mucosal immune responses. Mice vaccinated with the 20/13repNA virus were protected from the lethal challenge of both homologous and heterologous viruses. This strategy may provide a new method for the development of live, attenuated influenza vaccines for a better and more rapid response to influenza threats.

9.
Chemosphere ; 313: 137621, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36566796

RESUMO

Increased hazardous substances application causes more environmental pollution and risks for human health. Microalgae are the important biological groups in marine ecosystem, and considered to be sensitive to environmental pollutants. Therefore, toxicity test on marine microalgae could provide the most efficient method for aquatic toxicity assessment, and could also be used as the early warning signals in aquatic ecosystem. In view of this, our study aimed at investigating the toxicity potential of two typical organic compounds, and screening out novel photosynthetic indicators for the risk assessment of environmental pollutants. In this study, benzyl alcohol and 2-phenylethanol were chosen as the target organic compounds, and preliminary toxicity mechanism of these organic compounds on marine cyanobacterium Synechococcus sp. PCC7002 was investigated with chlorophyll fluorescence technology. Results showed that PCC7002 could be affected by benzyl alcohol or 2-phenylethanol stress, and the toxicity effect was concentration-dependent. And external benzyl alcohol and 2-phenylethanol stress damaged the oxygen evolving complex, and suppressed electron transport at the donor and receptor sides of photosystem II (PSII), influencing the absorption, transfer, and application of light energy. Furthermore, potential biomarkers were screened by half maximal inhibitory concentration (IC50) on the basis of pearson correlation coefficient analysis, and fluorescence intensity difference between the I-step and P-step of OJIP curve (δFIP) seems to be the most sensitive indicator for external stress. This study would be of significant interest to the biomarker community, and pave the way for the practical resource for marine pollution monitoring and assessment.


Assuntos
Poluentes Ambientais , Microalgas , Álcool Feniletílico , Synechococcus , Humanos , Ecossistema , Biomarcadores , Medição de Risco , Álcoois Benzílicos , Clorofila
11.
J Inflamm (Lond) ; 19(1): 24, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36451220

RESUMO

BACKGROUND: Acute lung injury (ALI) arises from sepsis or bacterial infection, which are life-threatening respiratory disorders that cause the leading cause of death worldwide. 5-Methoxyflavone, a methylated flavonoid, is gaining increased attention for its various health benefits. In the current study, we investigated the potential effects of 5-methoxyflavone against LPS-mediated ALI and elucidated the corresponding possible mechanism. METHODS: A mouse model with ALI was established by intratracheal instillation of LPS, and lung pathological changes, signaling pathway related proteins and apoptosis in lung tissues were estimated by H&E staining, immunofluorescence and TUNEL assay, respectively. Cell viability was evaluated by MTT assay; protein levels of pro-inflammatory mediators were measured by ELISA assay; levels of ROS and M1 macrophage polarization were assayed by flow cytometry; the expression of Nrf2 signaling, NOX4/TLR4 axis and P-STAT1 were detected by western blotting. RESULTS: Our results showed that 5-methoxyflavone treatment inhibited LPS-induced expression of NOX4 and TLR4 as well as the activation of downstream signaling (NF-κB and P38 MAPK), which was accompanied by markedly decreased ROS levels and pro-inflammatory cytokines (IL-6, TNF-α, MCP-1, and IL-8) in BEAS-2B cells. Moreover, we revealed that these effects of 5-methoxyflavone were related to its Nrf2 activating property, and blockade of Nrf2 prevented its inhibitory effects on NOX4/TLR4/NF-κB/P38 MAPK signaling, thus abrogating the anti-inflammatory effects of 5-methoxyflavone. Besides, the Nrf2 activating property of 5-methoxyflavone in RAW264.7 cells led to inhibition of LPS/IFN-γ-mediated STAT1 signaling, resulting in suppression of LPS/IFN-γ-induced M1 macrophage polarization and the repolarization of M2 macrophages to M1. In a mouse model of LPS-induced ALI, 5-methoxyflavone administration ameliorated LPS-mediated lung pathological changes, the increased lung index (lung/body weight ratio), and epithelial cell apoptosis. Meanwhile, we found 5-methoxyflavone effectively suppressed the hyperactive signaling pathways and the production of excessive pro-inflammatory mediators. Moreover, 5-methoxyflavone reduced LPS-mediated M1 macrophage polarization associated with elevated P-STAT1 activation in the lung tissues. In addition, 5-methoxyflavone improved the survival of LPS-challenged mice. CONCLUSION: These results indicated that 5-methoxyflavone might be suitable for the development of a novel drug for ALI therapeutic.

12.
Appl Opt ; 61(13): 3743-3747, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36256415

RESUMO

In this paper, an all-silica microsphere-lens was designed and fabricated on the fiber end face, which can effectively improve the coupling efficiency of free-space light. In the production process, a coreless silica fiber with specific length was spliced on the end face of the fiber and melted by a CO2 laser fusion splicer. Due to the effect of surface tension, the coreless silica fiber would form a microsphere-lens on the fiber end face and the diameter of the microsphere-lens could be adjusted by controlling the light-passing time of the CO2 laser fusion splicer. Through experiments, it can be found that the 3 dB bandwidth optical coupling distance of the microsphere-lens with a diameter of 270 µm is about 200 µm, and the focus depth is about 450 µm. In order to verify the feasibility of using the microsphere-lens in the fiber-optic Fabry-Perot sensors, a Fabry-Perot interferometer was constructed by using the microsphere-lens and the single-mode fiber end face. The experimental results showed that the interference spectrum of the Fabry-Perot interferometer has a good contrast ratio. Integrating the advantages of all-silica structure, simple manufacturing process, low cost, small size, and sturdy construction, the proposed microsphere-lens is expected to be a potential candidate for free-space light coupling and fiber-optic sensors in extreme environments.

13.
Micromachines (Basel) ; 13(5)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35630230

RESUMO

In this paper, a high-fineness fiber-optic Fabry-Perot high-temperature pressure sensor, based on MEMS technology, is proposed and experimentally verified. The Faber-Perot cavity of the pressure sensor is formed by the anodic bonding of a sensitive silicon diaphragm and a Pyrex glass; a high-fineness interference signal is obtained by coating the interface surface with a high-reflection film, so as to simplify the signal demodulation system. The experimental results show that the pressure sensitivity of this sensor is 55.468 nm/MPa, and the temperature coefficient is 0.01859 nm/°C at 25~300 °C. The fiber-optic pressure sensor has the following advantages: high fineness, high temperature tolerance, high consistency and simple demodulation, resulting in a wide application prospect in the field of high-temperature pressure testing.

14.
Mol Ecol ; 31(12): 3389-3399, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35445467

RESUMO

Facing phosphate deficiency, phytoplankton use alkaline phosphatase (AP) to scavenge dissolved organophosphate (DOP). AP is a multitype (e.g., PhoA, PhoD) family of hydrolases and is known as a promiscuous enzyme with broad DOP substrate compatibility. Yet, whether the multiple types differentiate on substrates and collaborate to provide physiological flexibility remain elusive. Here we identify PhoA and PhoDs and document the functional differentiation between PhoA and a PhoD (PhoD_45757) in Phaeodactylum tricornutum. CRISPR/Cas9-based mutations and physiological analyses reveal that (1) PhoA is a secreted enzyme and contributes the majority of total AP activity whereas PhoD_45757 is intracellular and contributes a minor fraction of the total AP activity, (2) AP gene expression compensates for each other after one is disrupted, (3) the DOP→PhoA→phosphate_uptake and the DOP_uptake→PhoD→phosphate pathways function interchangeably for some DOP substrates. These findings shed light on the underpinning of AP's multiformity and have important implications in phytoplankton phosphorus-nutrient niche differentiation, physiological plasticity, and competitive strategy.


Assuntos
Diatomáceas , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Diatomáceas/genética , Organofosfatos/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , Fitoplâncton/genética
15.
Front Microbiol ; 13: 1116975, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36938131

RESUMO

As a well-known pseudo-persistent environmental pollutant, oxybenzone (BP-3) and its related organic ultraviolet (UV) filters have been verified to directly contribute to the increasing mortality rate of coral reefs. Previous studies have revealed the potential role of symbiotic Symbiodiniaceae in protecting corals from the toxic effects of UV filters. However, the detailed protection mechanism(s) have not been explained. Here, the impacts of BP-3 on the symbiotic Symbiodiniaceae Cladocopium goreaui were explored. C. goreaui cells exhibited distinct cell growth at different BP-3 doses, with increasing growth at the lower concentration (2 mg L-1) and rapid death at a higher concentration (20 mg L-1). Furthermore, C. goreaui cells showed a significant BP-3 uptake at the lower BP-3 concentration. BP-3 absorbing cells exhibited elevated photosynthetic efficiency, and decreased cellular carbon and nitrogen contents. Besides, the derivatives of BP-3 and aromatic amino acid metabolism highly responded to BP-3 absorption and biodegradation. Our physiological and metabolic results reveal that the symbiotic Symbiodiniaceae could resist the toxicity of a range of BP-3 through promoting cell division, photosynthesis, and reprogramming amino acid metabolism. This study provides novel insights into the influences of organic UV filters to coral reef ecosystems, which urgently needs increasing attention and management.

16.
Appl Environ Microbiol ; 88(2): e0209721, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34757820

RESUMO

Phytoplankton have evolved a capability to acquire phosphorus (P) from dissolved organic phosphorus (DOP) since the preferred form, dissolved inorganic phosphate (DIP, or Pi), is often limited in parts of the ocean. Phytic acid (PA) is abundantly synthesized in plants and rich in excreta of animals, potentially enriching the DOP pool in coastal oceans. However, whether and how PA can be used by phytoplankton are poorly understood. Here, we investigated PA utilization and underlying metabolic pathways in the diatom model Phaeodactylum tricornutum. The physiological results showed that P. tricornutum could utilize PA as a sole source of P nutrient to support growth. Meanwhile, the replacement of PA for DIP also caused changes in multiple cellular processes, such as inositol phosphate metabolism, photosynthesis, and signal transduction. These results suggest that PA is bioavailable to P. tricornutum and can directly participate in the metabolic pathways of PA-grown cells. However, our data showed that the utilization of PA was markedly less efficient than that of DIP, and PA-grown cells exhibited P and iron (Fe) nutrient stress signals. Implicated in these findings is the potential of complicated responses of phytoplankton to an ambient DOP species, which calls for more systematic investigation. IMPORTANCE PA is abundant in plants and cannot be digested by nonruminant animals. Hence, it is potentially a significant component of the DOP pool in coastal waters. Despite this potential importance, there is little information about its bioavailability to phytoplankton as a source of P nutrient and the molecular mechanisms involved. In this study, we found that part of PA could be utilized by the diatom P. tricornutum to support growth, and another portion of PA can act as a substrate directly participating in various metabolism pathways and cellular processes. However, our physiological and transcriptomic data show that PA-grown cells still exhibited signs of P stress and potential Fe stress. These results have significant implications in phytoplankton P nutrient ecology and provide a novel insight into multifaceted impacts of DOP utilization on phytoplankton nutrition and metabolism.


Assuntos
Diatomáceas , Fitoplâncton , Animais , Ferro/metabolismo , Nutrientes , Fósforo/metabolismo , Ácido Fítico/metabolismo , Fitoplâncton/metabolismo , Transcriptoma
17.
Commun Biol ; 4(1): 797, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172821

RESUMO

Phosphorus (P) is an essential nutrient for marine phytoplankton. Maintaining intracellular P homeostasis against environmental P variability is critical for phytoplankton, but how they achieve this is poorly understood. Here we identify a SPX gene and investigate its role in Phaeodactylum tricornutum. SPX knockout led to significant increases in the expression of phosphate transporters, alkaline phosphatases (the P acquisition machinery) and phospholipid hydrolases (a mechanism to reduce P demand). These demonstrate that SPX is a negative regulator of both P uptake and P-stress responses. Furthermore, we show that SPX regulation of P uptake and metabolism involves a phosphate starvation response regulator (PHR) as an intermediate. Additionally, we find the SPX related genes exist and operate across the phytoplankton phylogenetic spectrum and in the global oceans, indicating its universal importance in marine phytoplankton. This study lays a foundation for better understanding phytoplankton adaptation to P variability in the future changing oceans.


Assuntos
Homeostase , Fósforo/metabolismo , Fitoplâncton/metabolismo , Fosfatase Alcalina/metabolismo , Fosfolipídeos/metabolismo , Fotossíntese , Fitoplâncton/genética , Fitoplâncton/crescimento & desenvolvimento , Domínios Proteicos , Transcrição Gênica
18.
J Phycol ; 57(3): 703-707, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33608874

RESUMO

Alkaline phosphatase (AP) in plants and algae is known to hydrolyze dissolved organophosphate (DOP) in order to obtain phosphorus when the preferred dissolved inorganic phosphorus (DIP) is present in limited supply. By conducting comparative analyses of physiologies and transcriptomes on a mutant of PhoA type AP (mPhoA) and wild type (WT) of the marine diatom Phaeodactylum tricornutum CCAP 1055/1 under P-replete and P-depleted conditions, we document other roles of this gene than DOP scavenging. PhoA mutation created by CRISPR/Cas9 diminished its DOP hydrolase activity but led to significant increases in cellular contents of pigment, carbon, and lipids, photosynthetic rate, growth rate, and the transcriptional levels of their corresponding metabolic pathways. All the results in concert indicate that besides P-nutrient scavenging under DIP deficiency, AP also functions, under the P-replete condition, to constrain pigment biosynthesis, photosynthesis, fatty acid biosynthesis, and cell division. These functions have important implications in maintaining metabolic homeostasis and preventing premature cell division.


Assuntos
Fosfatase Alcalina , Diatomáceas , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Diatomáceas/genética , Fósforo , Fotossíntese , Transcriptoma
19.
Sci Total Environ ; 763: 143013, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33203560

RESUMO

Harmful algal blooms formed by certain dinoflagellate species often occur when environmental nitrogen nutrients (N) are limited. However, the molecular mechanism by which dinoflagellates adapt to low N environments is poorly understood. In this study, we characterized the transcriptomic responses of Prorocentrum shikokuense to N deficiency, along with its physiological impact. Under N deficiency, P. shikokuense cultures exhibited growth inhibition, a reduction in cell size, and decreases in cellular chlorophyll a and nitrogen contents but an increase in carbon content. Accordingly, gene expression profiles indicated that carbon fixation and catabolism and fatty acid metabolism were enhanced. Transporter genes of nitrate/nitrite, ammonium, urea, and amino acids were significantly upregulated, indicating that P. shikokuense cells invest to enhance the uptake of available dissolved N. Notably, upregulated genes included those involved in endocytosis and phagosomes, evidence that P. shikokuense is a mixotrophic organism that activates phagotrophy to overcome N deficiency. Additionally, vacuolar amino acid transporters, the urea cycle, and urea hydrolysis genes were upregulated, indicating N recycling within the cells under N deficiency. Our study indicates that P. shikokuense copes with N deficiency by economizing nitrogen use and adopting multiple strategies to maximize N acquisition and reuse while maintaining carbon fixation. The remarkable low N adaptability may confer competitive advantages to P. shikokuense for forming harmful blooms in DIN-limited environments.


Assuntos
Dinoflagelados , Clorofila A , Dinoflagelados/genética , Perfilação da Expressão Gênica , Proliferação Nociva de Algas , Nitrogênio , Transcriptoma
20.
J Virol ; 94(20)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32796071

RESUMO

Since the first outbreak in 2013, the influenza A (H7N9) virus has continued emerging and has caused over five epidemic waves. Suspected antigenic changes of the H7N9 virus based on hemagglutination inhibition (HI) assay during the fifth outbreak have prompted the update of H7N9 candidate vaccine viruses (CVVs). In this study, we comprehensively compared the serological cross-reactivities induced by the hemagglutinins (HAs) of the earlier CVV A/Anhui/1/2013 (H7/AH13) and the updated A/Guangdong/17SF003/2016 (H7/GD16). We found that although H7/GD16 showed poor HI cross-reactivity to immune sera from mice and rhesus macaques vaccinated with either H7/AH13 or H7/GD16, the cross-reactive neutralizing antibodies between H7/AH13 and H7/GD16 were comparably high. Passive transfer of H7/AH13 immune sera also provided complete protection against the lethal challenge of H7N9/GD16 virus in mice. Analysis of amino acid mutations in the HAs between H7/AH13 and H7/GD16 revealed that L226Q substitution increases the HA binding avidity to sialic acid receptors on red blood cells, leading to decreased HI titers against viruses containing HA Q226 and thus resulting in a biased antigenic evaluation based on HI assay. These results suggest that amino acids located in the receptor-binding site could mislead the evaluation of antigenic variation by solely impacting the receptor-binding avidity to red blood cells without genuine contribution to antigenic drift. Our study highlighted that viral receptor-binding avidity and combination of multiple serological assays should be taken into consideration in evaluating and selecting a candidate vaccine virus of H7N9 and other subtypes of influenza viruses.IMPORTANCE The HI assay is a standard method for profiling the antigenic characterization of influenza viruses. Suspected antigenic changes based on HI divergency in H7N9 viruses during the 2016-2017 wave prompted the recommendation of new H7N9 candidate vaccine viruses (CVVs). In this study, we found that the L226Q substitution in HA of A/Guangdong/17SF003/2016 (H7/GD16) increased the viral receptor-binding avidity to red blood cells with no impact on the antigenicity of H7N9 virus. Although immune sera raised by an earlier vaccine strain (H7/AH13) showed poor HI titers against H7/GD16, the H7/AH13 immune sera had potent cross-neutralizing antibody titers against H7/GD16 and could provide complete passive protection against H7N9/GD16 virus challenge in mice. Our study highlights that receptor-binding avidity might lead to biased antigenic evaluation by using the HI assay. Other serological assays, such as the microneutralization (MN) assay, should be considered a complementary indicator for analysis of antigenic variation and selection of influenza CVVs.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Subtipo H7N9 do Vírus da Influenza A , Mutação de Sentido Incorreto , Infecções por Orthomyxoviridae , Substituição de Aminoácidos , Animais , Cães , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/imunologia , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Macaca mulatta , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...